ニューラルネットワーク(深層学習)を用いた分類機は、非線形分離性能があることが知られています。 非線形の分離性能とは、データに対して直線ではない、分類境界を引くことができる性能のことです。 例えば、次のような渦巻き上のデ […]
カテゴリ変数をOne-Hot-Encoding化することは、機械学習やデータサイエンスの実務をおこなっていると頻繁に操作することになると思います。 今回は、One-Hot-EncodingをPythonで実行する方法につ […]
RNN(Recurrent Neural Network)は、深層学習のアルゴリズムの中でも、CNNと並ぶ代表的なアルゴリズムです。基本的に深層学習を学び始めると、CNNに続いてRNNを学ぶことになると思います。 RNN […]
コサイン類似度(cosine similarity)は、2つのベクトルの類似度を示す指標です。 コサイン類似度は、-1 〜 1の間で値をとり、2つのベクトルの向きが近い時に、コサイン類似度の値は1に近くなり、反対にベクト […]
pytorch-geometricでは、グラフ状の様々な畳み込み操作をメッセージパッシングの枠組みで、柔軟に記述できるMessagePasssingクラスが用意されています。 MessagePasssingを利用すること […]
|カテゴリー:Python , グラフニューラルネットワーク , 深層学習
pytorchは、ニューラルネットワークを実装するために非常に便利な関数やクラスがたくさんあります。 また、他の人が独自に作った深層学習モデルを読むのに、pytorchでよく使われるような関数やにクラスについては、ある程 […]
GCN(Graph Convolutional Network、グラフ畳み込みネットワーク) は、2017年に深層学習のトップカンファレスであるICLRで発表されて以来、徐々に注目を集めており、2022年現在深層学習関連 […]
|カテゴリー:pytorch , グラフニューラルネットワーク , 深層学習
NetworkXは、Pythonでグラフ構造の作成や各種アルゴリズムの操作、また可視化等を気軽にすることができます。 可視化では、Pythonのmatplotlibを利用できることや、内部はC, C++, fortran […]
|カテゴリー:Python , コンピュータサイエンス , データ構造
pytorchはディープラーニング用のライブラリです。ディープラーニング用のライブラリとして、他に、Kerasやtensorflowなどがありますが、pytorchは近年非常に利用され始めてきています。よく深層学習の最新 […]
最近では、深層学習といったらpytorchがほぼ一択となってきており(少なくとも機械学習・深層学習系の研究界隈では)、Kerasやtensorflowを使っていたけど、pytorchを使い始めたり、必要に応じてpytor […]