ニューラルネットワーク(深層学習)を用いた分類機は、非線形分離性能があることが知られています。 非線形の分離性能とは、データに対して直線ではない、分類境界を引くことができる性能のことです。 例えば、次のような渦巻き上のデ […]
カテゴリ変数をOne-Hot-Encoding化することは、機械学習やデータサイエンスの実務をおこなっていると頻繁に操作することになると思います。 今回は、One-Hot-EncodingをPythonで実行する方法につ […]
pytorchはディープラーニング用のライブラリです。ディープラーニング用のライブラリとして、他に、Kerasやtensorflowなどがありますが、pytorchは近年非常に利用され始めてきています。よく深層学習の最新 […]
交差エントロピー誤差(Cross Entropy Error, Cross Entropy Loss)は、深層学習の分類問題で非常によく利用される損失関数です。 交差エントロピーと聞くと、初めて遭遇した人にとっては、もの […]
機械学習の分類モデルの評価する際には、評価指標として混同行列をはじめ、PrecisionやRecall、F1値など様々な概念が登場します。 機械学習や深層学習系の多くの論文や、データサイエンスの結果をまとめるのに、これら […]
今回は、サポートベクトルマシン(Support Vector Machine, SVM)を用いて、MNISTの画像分類に取り組んでみます。 サポートベクトルマシンは理論を勉強するとなかなか難易度が高いのですが、Pytho […]